		Oxic cha	amber										
				s.w.d.		3.2	m	Ejemplo #	#2 Aire	ación Ex	tendida		
			mad						nodel				
wastowator flow	1000	m2/day	0.526				0.5. GP	IVI					
BOD in (mg/L)	147	m3/uay	0.520	644 6		21/	966.9	h02/day					
TKN in (mg/L)	25			153 5	bTKN/da	ay IV	706.0	h02/day					
······(···y/∟)				100.0	, io i i (in/ud	AOR	1672 R	bO2/day	69.7	lbO2/hr			
oxic cell data							1072.0	1002/day	00.7	1002/11			
lenath	26	m						HP/ma H	-IP for m	iixina	if CFM for mi	xina	
width	12	m	tank volu	ıme	residence	e (davs)		80	21.1	iixiiig	403 CFN	A A	
s w d	32	m	998.4	m3	0.50	(uuje)		90	23.7		100 011		
0	10.496	(feet)	0.264	ma	0.00			100	26.4				
		()											
			lbBOD/d	ay 1000	cu.ft.	18.3		Ν	ALSS	3000	hi s	beed low speed	
			lbBOD/d	ay acre		8360.8		f,	/m	0.098		39.8 30.6	
total tankage volu	ime	0.264	mg										
total residence tim	ne	0.50	days										
												power density	
AOR	AOR/SO	SOR		HP at 2.	5 lb/h per	de-rate 5	de-rate	1 de-rate 15	5	HP/mg	HP for mixing	HP per 1,000 cu.ft.	
69.7	0.7	99.6		39.8	3	41.9	44.3	46.9		80	21.1	1.13	
69.7	0.6	116.2		46.5	;	48.9	51.6	54.7		90	23.7	1.32	
69.7	0.5	139.4		55.8	3	58.7	62.0	65.6		100	26.4	1.58	
quick-and-dirty dif	ffused aei	ation est	imates										
CFM for	diffused a	aeration/	oxygen tra	1126	5 CFM	AOR/SOF	1 = .37	1.7% per	teet	1464	CFM	2488 m3/h	
HP estim	nate for or	kygen		40.9) HP					with 1.3	safety factor		
										5.63	psig	388 mbar	
notes:										6.13	psig(PeakOv	erdes 423 mbar	
2. some presume	d TKN is	used at f	ull value f	or HP ca	lculation, a	although s	ome nitro	ogen would	be used	d up for n	ormal biologic	al/BOD processes	
3. approach would	d be exter	nded/acti	vated slue	dge alter	native usir	ng f/m= c.	0.1 and	300 gpd/sq	l.ft. for a	seconda	ry clarifier		
4. Possible prelim	iinary quo	te:											
		about	32.8	HP IT IOV	v speed ur	nits							
		about	183	1-m tube	es at 8 CF	M per tube	e with 1.3	satety ta c	or suitab	le disc m	ake/model		
			53.2	HP	blowers		, ,	•					
other related calc	S:						area (m	2)				0	
seconda	ry clarifie	diamete	er at 300 g	gpa/sq.π.	14.4	m 0	162.8	3347	t id torqi	Je	44.0	8	
waste sit	uage now	QW for V	arious sit	loge age	values, 3	0 mg/L 55		e 0.5 %	/o	Hammer	.412	hulder thisteres	4
	ago dava	Ow mad		O(e + 1)	h/dov dru	Ow/flow in	HA3 (3	Or mad	le #2)		P app of 49/	regime diam (m)	torque # lb
	aye uays				110/Uay Ury		0/		124.0	0/	7 4	regime ulam. (m)	2700
	10	0.0203	10670	19.0	5 1107.0 5 527.9	2.4	/o o/	0.7093	142.5	/o o/	7.4	3.5	1691
	14.5	0.0127	7760	5.0	222.0	2.4	/o o/	0.7491	142.0	/o o/	3.5	3.3	1001
	14.5	0.0070	7207	5.4	2021	1.0	/o o/	0.7014	144.0	/o o/	2.0	2.0	023
	25	0.0074	3176	22	1323	0.6	%	0.7023	147.0	%	0.8	1.8	421
	25	0.0052	5170	2.2	. 102.0	0.0	70	0.7720	147.0	70	0.0	1.0	721
drv weig	ht sludae	as predi	cted by H	ammer 4	40 Figure	11-40 as a	a function	n of f/m k	nown to	be "reas	onable" for m	unicipal but may	
a.,g	lb/dav dr	438.6			2gu.0	2 * K * mo	d * 8.33	* BOD5 mo	/L	differ cor	siderably if ir	idustrial ww	
tentative	BFP apr	n for pos	sible inlet	SS settir	n ballpark/a	alternate fi	qures at	above spe	cified ne	t BFP ho	urs per dav		
3.7	3%		1755	gpd			0.1.1.1.1.1						
3.1	3.5%		1505	gpd		sludge vie	ld (lb/dav	/dry/lbB	OD/dav)	0.68			
2.7	4%		1316	gpd		3. 10	(,	· · · · · · · · · · · · · · · · · · ·				
				01		dewaterin	g block s	ubject to re	view/ac	tual oper	ating regime		
foot note	e#1	Assumir	ng treated	wastewa	ater exits c	larifier wit	h say 30	mg/L SS a	nd using	g entered/	calculated tar	nk MLSS,V	
		solving f	or Qw in a	sludge ag	ge equatio	n (11-12-	Hammer	.412) for va	trious ag	ge setting	s results in W	AS estimates as shown	
		2								0			
foot note	e#2	Tentativ	e Qr's res	ult from	performing	somewha	at crude r	mass balan	ce arou	nd secon	dary clarifier (solving for RAS):	
			(Q+Qr) *	MLSS =	Q * 30 mg	g/L + (Qw+	-Qr) * un	derflow SS	in mg/L				
		Return s	ludge rate	es to be t	fine tuned	as will pro	bably op	erate in an	A2/O fa	shion - m	ore later		
					(It all dep	ends how	lucky we	e are with u	nderflov	v SSs: 0.5	5 - 2%)		
		Although	n not show	vn, it is a	ssumed so	ome thicke	ener/DAF	is used to	concent	trate settl	er underflow ι	up to 4%	
			(Hamme	er.443: "A	s a genera	al rule, the	solids co	ontent mus	t be at le	east 4 per	cent for feasil	ole dewatering")	
quotable	es/summa	ry (tenta	tive)										
	surface a	aerators	0.1.1.		1								
	retrievab	le tubes	& blowers	6	local sou	rcing of PE	=/PVC pi	pe/panel/ot	her				
		1404041 A	doree Mat			Martin I	Culle Mark			tanana kati	tio corr	المتعاقب فيسترقص المتعرين	
		www.Airea	auures.ivet			www.virtual	Gulla.Net			www.bales	aue.com	www.LodosActivados.c	<u>mu:</u>